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ABSTRACT

CRITTER is a system that reasons about digital hardware designs, using a declarative

representation that can represent components and signals at arbitrary levels of abstraction

CRITTER can derive the behaviors of a component's outputs given the behaviors of the

inputs, it can derive the specifications a component's inputs must meet in order for some

given specifications on the outputs to be met, and it can verify that a given signal behavior

satisfies a given specification. By combining these operations, it evaluates both the

correctness and the robustness of the overall design. 1

1. INTRODUCTION: REASONING ABOUT DIGITAL CIRCUITS

In understanding or explaining a digital circuit, a human engineer's reasoning is flexible in

several ways:

1. Behavior vs. Specification: The engineer can reason about what wil/
happen in the circuit, given some input (its behavior), or about what ought to
happen in order for the circuit to perform as desired (its specifications), In a
correctly working circuit, the behavior must satisfy the specifications, but the
two need not be identical; especially in matters of timing, "over-satisfaction'
of some specifications is good practice.

2. Forward vs. Backward: The engineer can either use some fact about the
inputs to a component to infer something about the output (forward
reasoning), or vice-versa (backward reasoning).

3. Level of Abstraction: In reasoning, the engineer can treat each physical
component separately or can view several components as a single functional
module. A;so, the engineer can view electrical signals at different levels of
abstraction, e.g. as sequences of high/low voltages or as ASCII characters.

4. Degree of Specificity: The engineer can reason about the value of a signal
either at a specific time or over all time (e.g., "The clock can never rise while
this signal is high.") Also, the engineer can deal with specific data and time
values, e.g. "10 nsec. after the clock rises", or general predicates, e.g.
"between 5 and 10 nsec. after ..."

We have developed a system, called CRITTER, that displays some of this same flexibility.

CRITTER does forward reasoning about behaviors and backward reasoning about

specifications, propagating information step by step through a circuit in a manner

reminiscent of constraint propagation systems [1, 2, 3, 7, 8, 9J and Waldingers Goal

Regression [ill. CRITTER handles varying levels of abstraction, statements about specific

values or more general predicates, and statements quantified over all time.

CRITTER is a system for "critiquing" digital circuits. That is, it is designed to deductively

solve the following problem:

This material is based on work supported by the Defense Advanced Research Proiects Agency under

Research Contract N00014-81-K-0394. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official policies. eitner expressed or

impied, of the Defense Advanced Pesearch Poiects Agency or the U.S. Government.
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Given the behavior of a circuit's inputs and the specifications on its
outputs, determine the behavior and specifications for each signal in the
circuit and whether each signal's behavior meets all its specifications.

We also believe CRITTER's reasoning methods will prove valuable in other design tasks
besides critiquing. In particular, our work on CRITTER has been part of a project on
redesign aids [6]. We also envision applications in creating, debugging and documenting
designs and in trouble-shooting physical hardware.

2. THE ANATOMY OF CRITTER
In this section we will describe how CRITTER represents and reasons about circuits

First, however, we will introduce the circuit we will be using as a running example.

2.1. The Example Circuit
The circuit is shown in Fig. 2- 1 For purposes of exposition, it is a bit simpler than the

real circuits on which we have used CRITTER (See Sec. III)

ASCI I-IN
> LATCHED-

Latch ASCII Rom EBCDiC-OUT
CLK L > R

Figure 2-1:
THE EXAMPLE CIRCUIT:

AN ASCII-EBCDIC CODE CONVERTER

This circuit is designed to convert ASCII alphanumeric characters to their EBCDIC
equivalents. Every 576 nanoseconds a character appears at the input ASCII-IN, and is held
there for 300 nsec.. After each character appears, the clock signal CLK will rise.

The actual translation to EBCDIC is done by ROM (read-only-memory) R, but this particular
ROM requires its input to be available for at least 500 nsec. The input characters are only
avaiiablb for 300 nsec. so we also have latch L which samples a character each time CLK
rises and keeps it stable for the ROM until the next rise of CLK.

29 July 1982 2



Kelly and Steinberg The CRITTER System

2.2. Representation of Circuits
The physical structure of E circuit is represented by modules and data-paths A moduile

represents either a single component or a cluster of components being viewed as a single
functional block. In Fig. 2-1, both the latch and the ROM are modules and we could regard
their composite as a module as well if we chose to do so. Similarly, a data-path
represents either a wire or a group of wires.

2.2.1. Signals
The data flowing on a data path is viewed as a data-stream, which represents the entire

history of the data on the path as an infinite sequence of data elements, i.e. as an array
with subscripts running from 1 to infinity Each element is characterized by a set of
;eatures such as its TYPE, VALUE, START-TIME, and DURATION.

The behavior of a data-stream is represented by a formula for each feature, giving the
value of the feature for an element as a function of the element's subscript. For instance,
Fig 2-2 gives the set of behavior formulas for the ASCII characters at the input to the
LATCH (The syntax used by the CRITTER has been slightly modified here and in the other
examples for the sake of readability.) Essentially Fig. 2-2 says that

For all i from 1 to infinity there exists a unique data element ASCII-IN(i),
whose TYPE is ..., whose VALUE is .... etc.

Note that all times in the circuit are given relative to some arbitrary TO.

NAME of signal = ASCII-IN
INDEX-STRUCTURE = ([i (from I to +INFINITY)])
TYPE(I) = ASCII-CHARACTER
VALUE(i) = NOT-SPECIFIED
START-TIME(i) = (576*i + 435) nsec. after TO
DURATION(i) = 300 nsec.

Figure 2-2:
GIVEN BEHAVIOR FOR ASCII-IN

A signal can also be described as an array of more than one dimension; the additional

dimensions describe the substructure of the larger repeating elements. For example, Fig.
2-3 gives the behavior for the other input signal, the clock pulse for the latch. It says
that each element of the data-stream has subparts numbered 0 to 3, and gives formulas

for the features of the subparts.

It is interesting to note that the two input signals are described at two very different

levels of abstraction. The clock is described in terms of high and low voltages, which are
even less abstracted than bits. The other input is described as a stream of characters,
leavor,g implementation details implicit, including the fact that an ASCII character requires 7
bits to represent, and thus the LATCH module must really be 7 physical latches. The ability
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NAME of signal = CLK

INDEX-STRUCTURE ([I (from 1 to +Infinity)]
[phase# (from 0 to 3)]

TYPE(i,phase#) = VOLTAGE-LEVEL

VALUE(O, phase#) = (CASE phase# of
0: RISE
1: HIGH
2: FALL
3: LOW)

START-TIME
(i,phase#) [576*(i+1) +

(CASE phase# of
0: 20
1: 21
2: 92
3: 93)]

nsec. after TO
DURATION

(i,phase#) = (CASE phase# of
0: 1
1: 71
2: 1
3: 503) nsec.

PERIOD = 576 nsec.

Figure 2-3:
GWEN BEHAVIOR FOR CLK

not only to abstract, but to mix levels of abstraction freely in a single circuit, is a
powerful tool for focusing CRITTER's attention on the critical analytical issues within each

circuit and suppressing insignificant detail. 2

2.2.2. Modules
A module's operation is described by a set of operating conditions and a set of

mappings. An operating condition is a specification (i.e. a predicate) on a module's inputs
that must be met if the module is to work For example, in Figure 2-4, operating
condition (4] states that the clock for a given character must occur at least 20 nsec.
after the character starts, i.e. the "setup time" for this latch is 20 nsec. Condition [6]
says there must not be a clock between characters.

For each output of a module there is a mapping which gives a formula for each feature
of the output in terms of features of the inputs. For example, Figure 2-5 says that the

2Note, however, that CRITTER does not choose its own abstractions: they must be suppiied from outside.
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[1). CLK must fit the definition of a

STANDARD-CLOCK.
(i.e. two dimensions, periodic, etc.)

[2]. INDEX-STRUCTURE of ASCI I-IN must match
' ([t (from 1 to +Infinity)])

[3]. FOR ALL i > 0, j IN {1,31
DURATION[CLK (i j)] >- 20 nsec.

(4]. FOR ALL i > 0, the time of the
NEXT (RISE of CLK) after

START-TIME[ASCII-IN (i)]
>- START-TIMECASCII-IN (i)]

+ 20 nsec.

[5]. FOR ALL i > 0, the time of the
NEXT (RISE of CLK) after

START-TIME[ASCII-IN (i))

< START-TIMECASCII-IN (i)]
+ DURATION[ASCII-IN ()].

[6]. FOR ALL i > 0, the time of the
NEXT (RISE of CLK) after

(START-TIME[ASCII-IN (i)]
+ DUR,'TION[ASCII-IN (i)])

> START-TtME[ASCII-IN (i+I)].

Figure 2-4:
OPERATING-CONDITIONS OF LATCH L

output LATCHED-ASCII is a data-stream with elements from one to infinity, and tells how

features of these elements depend on features of CLK and ASCII-IN. Note that a mapping

is only reliable if all of the module's operating conditions are met by its inputs.

NAME of output = LATCHED-ASCII
INDEX-STRUCTURE - ([D (from I to +Infinity)])
TYPE(I) TYPE[ASCII-IN(i)]
VALUE(i) = VALUE[ASCII-IN (i)]
START-TImE(I) (the time of the

NEXT (RISE of CLK) after
START-TIMEI[ASCII-IN (i)])

+ 35 nsec.

DURATION(i) W PERIOD[CLK] - 35 nsec.

Figure 2-5:
INPUTIOUTPUT MAPPING OF LATCH L

As another example, Fig. 2-6 gives the operating conditions and mapping for ROM R.
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OPERATING -CONDITIONS

[1]. INDEX-STRUCTURE of input LATCHED-ASCII

must match '([*c (from 1 to +INFINITY)])'

[2]. FOR i > 0
TYPE [LATCHED-ASCII (i)] = ASCII-CHARACTER

[3]. FOR i > 0

DURATION [LATCHED-ASCII (i)] > 500 nsec.

INPUT/OUTPUT MAPPING OF ROM

NAME of output = EBCDIC-OUT

INDEX-STRUCTURE = ([i (from 1 to +Infinity)])
TYPE(i) = EBCDIC-CHARACTER
VALUE(i) = ASC-TO-EBCD

(VALUE [LATCHED-ASCII (i)])

START-TIME(i) = START-TIME [LATCHED-ASCII (i)]
+ 500 nsec.

DURATION(i) = DURATION [LATCHED-ASCII (i)]
- 250 nsec.

Figure 2-6:
DESCRIPTION OF OPERATION OF ROM R

2.3. Reasoning Methods

Using these representations, CRITTER can derive the behaviors of a modules outputs

given the behaviors of the inputs, it can derive the specifications a module's inputs must

meet in order for some given specifications on the outputs to be met, and it can verify

that a given behavior satisfies a given specification. We will now discuss these kinds of

reasoning

2.3.1. Propagating Behaviors Forward
L To calculate the behavior of a module's outputs, given the behavior of its inputs, one

symbolically applies the module mappings to the inputs, by a process of substitution. The

behavior of the output resembles the mapping, but with every reference to a feature of

the input replaced by the corresponding formula from the input's behavior. For instance, to

calculate the DURATION of the latched-characters we substitute the behavior of the CLK

from Figure 2-3:

PERIOD - 576 nsec.

into the DURATION formula of Figure 2-5:

DURATION(i) - PERIOD(CLK) - 35 nsec.
- 576 nsec - 35 nsec.
- 541 nsec.
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On the other hand, since nothing is specified in Figure 2-2 about the VALUE of each

incoming character, nothing can be substituted in the VALUE formula of the LATCHs 1/0

mapping. so the formula

VALUE (i) = VALUE[ASCII-IN (i)]

is all that we know about that feature of the output behavior A complete calculation of

the behavior of the output of the latch is given in Figure 2-7

NAME of signal = LATCHED-ASCII
INDEX-STRUCTURE = ([i (from 1 to +INFINITY)])
TYPE (i) = ASCI I-CHARACTER
VALUE (i) = VALUE[ASCI I-IN (i)]
START-TIME (i) = [576'i + 631] nsec. after TO
DURATION(i) = 541 nsec.

Figure 2-7:
CALCULATED BEHAVIOR OF OUTPUT OF LATCH

Note that this substitution operation depends on the input behavior being represented as

<feature> = <formula> rather than in the more general predicate form we use for

operating conditions. The mapping must also be represented as <feature> = <formula>. If

not, the substitution can still be done, but it will result in a behavior which does not have

the <feature> = <formula> form and cannot be further propagated.

Forward propagation can generate some messy expressions. CRITTER does some

algebraic transformations to simplify expressions as much as it can. For instance, in

calculating the START-TIME of LATCHED-ASCII it transforms

[NEXT (576*(j+1) + 20) AFTER (576*i + 435)] + 35

into

576*i + 631

Of course, the forward propagation is not valid unless the module's operating conditions
are met, but this is checked as part of checking in general whether a data-stream meets

its specifications, which is discussed below.

By repeated propagation, CRITTER can produce a behavior for each data-stream in a

circuit, given behaviors for the circuit's inputs. Figure 2-8 gives the calculated behavior of
the ROM's output, produced by propagating the behavior of LATCHED-ASCII one step

further.

2.3.2. Propagating Specifications Backward

Just as forward propagation computes the behaviors of the data-streams, CRITTER uses a

process of back propagation to derive the specifications that these behaviors must meet.

More specifically, given specifications (i.e. predicates) involving the output of any module,

CRITTER can back propagate them, that is, derive a set of specifications involving the
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NAME of signal = EBCDIC-OUT
INDEX-STRUCTURE = ([i (from 1 to +INFINITY)])
TYPE(i) = EBCDIC-CHARACTER

VALUE (i) = ASC-TO-EBCD
(VALUE [ASCII-IN (i)])

START-TIME(i) = (576',i + 1131) nsec. after TO
DURATION(i) = 291 nsec.

Figure 2-8:
CALCULATED BEHAVIOR OF ROM OUTPUT

inputs to that module which are sufficient to ensure that the original output specification

will be met. (This is a hardware analog of Dijkstras "Weakest Precondition [4]) Thus,

given specifications involving the 'global' outputs of a circuit, CRITTER can repeatedly back

propagate them to produce specifications for all data-streams in the circuit.

Like forward propagation, back propagation is also done by a process of substitution

Each reference in the specification to a feature of the module's output is replaced by the

corresponding formula from the modules mapping. For instance, Fig. 2-9 gives a set of

specifications for the output of our example circuit. Back-propagating specification [3]
of Figure 2-9 through the mapping of the ROM and simplifying gives:

For all j > 0,
DURATION[EBCDIC-OUT(i)] > 200
DURATION[LATCHED-ASCII (i)] - 250 > 200

DURATION[LATCHED-ASCII(i)] > 450 nsec.

This substitution also depends on the //0 mapping being represented as

<feature> = <formula>

Of course, in order to produce the right output, the inputs to a module must first meet

the operating conditions of the module. So, in addition to the specifications produced by
substitution, the specifications on the input to a module must also include the operating

conditions. It is this complete set of specifications which is further back propagated.

2.3.3. Checking Behaviors Against Specifications

Having derived the behavior and specifications for each data-stream. CRITTER must check

to see if the specifications are met. In our case studies to date, CRITTER has been able tc

do this by replacing each feature-reference in the specification with the corresponding

formula from the behavior, and then applying very straightforward simplifications to

produce propositions which can be checked trivially For instance, specification [4] in

Figure 2-9 reduces to the inequality 576 > 500, by simple symbolic subtraction of

polynomials. It remains to be seen whether further examples will require more

sophisticated proof techniques.

When the form of a specification is a single-sided arithmetic inequality, the margin by

which that inequality is satisfied (e.g 76 nsec. in specification [4J) represents a crude
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evaluate fragments of a design in progress over-strong pre-conditions Might entail

frivolous and arbitrary restrictions on possible methods for completing the design It

remains to be seen how much of a problem this is in practice

It is uncertain if the set of all common component usages is small enough that a library

of them would be useful, or if in-context descriptions should be generated individually only

as needed We are currently working on methods to automatically generate in-context

descriptions from out-of-context descriptions

3.2. Data Abstraction
As we have seen, data-streams can be described at various levels of abstraction In fact.

the module that produces a data-stream may employ a different abstraction from the

module that uses it. For instance, a counter might be described as transmitting a sequence

of integers while a latch which receives these numbers might consider them simply as
vectors of bits. We handle this kind of translation by interposing a type-converter
pseudo-module to convert the numbers to bit vectors. A pseudo-module is represented

just like any other module, but it corresponds to a change in interpretation, rather than to a
physical component. The same propagation methods work on pseudo-modules as on real

modules

3.3. Limitations

3.3.1. Feedback and State

CRITTER still has a number of limitations. One major problem is that it cannot handle

circuits with inter-module feedback. That is, it can only handle circuits in which the
relation "module A uses the output of module B" induces a partial order This is a less

drastic limitation than it might appear since there are many useful and interesting circuits

that have no inter-module feedback (i.e. where feedback loops exist, they are enclosed
within a single module).

None the less, this is a serious limitation, and we place a high priority on removing it.

We plan to look at both the previous work on cycles in constraint networks (eg.

[1, 3, 7, 8, 93) and the work on using loop invariants in program verification [4, 5]

Another limitation is that we do not deal explicitly with the internal state of a component

such as a RAM or a latch. This, like internal feedback loops, can be concealed from

CRITTER by choosing a suitably abstract "in-context" description for a module We expect
that once we can handle feedback, we can model internal state as an implicit feedback

path. as is done with formal Finite State Automata.
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3.3.2. Uncertainty
Our <feature>=<formula> notation for behaviors and mappings implies that we know a

precise formuia for each feature However for parameters like delay througn a

component. the parts catalogue normally gives a range of possible values One solution to
this is to embed uncertainty in these formulas by introducing slack variables to represent

it, eg

for all i > 0,
START-TIME (out (i)) =

(START-TIME (in ())) + SLACK,

The restrictions on the uncertainty, eig 10 nsec < SLACK. < 20 nsec, can be carried along

separately

3.4. Relation to Constraint Propagation

Our desire to do propagation both forward and backward and to eventually handle

feedback lead us to view CRITTER as a kind of constraint propagation system However,
much previous constraint-system work [1. 3, 7, 8, 9] has focused on problems of finding

consistent solutions to complex networks of constraints, and has assumed that the
individual values and constraints were quite simple In contrast, our focus has been more
like that of Stefik [10], in that we have put off dealing with complex networks (eg

feedback) but have dealt with richer kinds of values and constraints In particular

* Because we need to deal with entire time histories of signals and even
arbitrary predicates on these time histories rather than with single values or
small sets of values, our individual propagation steps involve symbol
substitution rather than, e g., arithmetic operators In fact we really have two
kinds of propagation, one for behaviors and another for specifications, but
we can use the same representation of our constraint iie. the module
function) and just apply different processes to it for the two kinds of
propagation.

* Since a specification really expresses a constraint among several data-streams
(e.g. conditions 4-6 in Fig. 2-4), back-propagation is really the propagation of
one kind of constraint (a specification) through another kind of constraint (a
function). We could even express both these constraints in the same
language, except that in order to do the substitution. the function mapping has
to be in a <feature> = <formula> form.

3.5. Early Experiences With CRITTER
CRITTER has been used to test a fragment of a mature circuit design (1976 for a TTL-

based CRT terminal video controller About thirty specifications in all had to be satisfied

on a total of nine DATA-STREAMS Surprisingly, it quickly discovered a potential timing
anomaly that had never been noticed before in conventional testing, nor in actual use of the

circuit.
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4. CONCLUSIONS

CRITTER thus embodies varied ana useful kinas of reasoning about digital circuits These
reasoning abilities are useful for automatically critiquing a circuit, and should be applicable

to several other tasks as well One pressing need is to extend CRITTER to handle circuits
with feedback and components with state We also plan to implement mechanisms to
handle the slack variables, and to try to apply CRITTERs reasoning methods to other tasks,

such as trouble-shooting and automatic design
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